### Ma and Pa Kettle math

A little fun video clip where Pa and Ma Kettle prove themselves good 'mathematicians'! He "proves" by long division that 25 ÷ 5 = 14, and she "proves" by multiplication algorithm that 5 × 14 = 25.

I was just sent a link to this site; all it is, is a handy one-page printable conversion chart for various US measures, metric measures, and US vs. metric measures. Includes even a comparative Fahrenheit vs. Celsius thermometer.

http://metricconversioncharts.org/

http://metricconversioncharts.org/

I got inspired by the blogpost Art School | Geometric Design with Islamic Art where Deborah shows how to make a neat **flower design with seven circles**, using a compass, and then coloring it using 2, 3, or 4 colors (or however many of your own). I think it ties in neatly with mathematics, and lets students practice drawing circles with a compass.

My girls loved the art/math project. Here are pictures they made:

Here are step-by-step instructions for the flower design:

1. Draw a line and a circle so that the circle's center point is on the line. Then mark the points where this circle intersects the line.

2. Use those points as center points, and draw two more circles. The radius is the same all the time, so make sure you don't change it on your compass!We used 5 cm as the radius, and that made the whole design fit neatly on a regular letter size paper.

3. Now note the two points marked in the picture. They will be used as center points in the next step.

4. Draw two more circle…

My girls loved the art/math project. Here are pictures they made:

Here are step-by-step instructions for the flower design:

1. Draw a line and a circle so that the circle's center point is on the line. Then mark the points where this circle intersects the line.

2. Use those points as center points, and draw two more circles. The radius is the same all the time, so make sure you don't change it on your compass!We used 5 cm as the radius, and that made the whole design fit neatly on a regular letter size paper.

3. Now note the two points marked in the picture. They will be used as center points in the next step.

4. Draw two more circle…

I got a question,

"*I am supposed to teach my calculus class one lesson. *

That lesson has to be on something that can be applied

to whatever I am hoping to major in. I am planning on

studying pre-med to become a doctor. Could you tell

me how doctors apply math learned in calculus 1?"

I suspect doctors don't actually use any calculus in their daily work with people. BUT, it is used in medical research and analysis.

For example, calculus concepts are applied in studying how medicines act in the body. I found an article called Half-life and Steady State that talks about how the patient might be taking a medication and all the same time the body is clearing the previous doses... Eventually there comes a "steady state" where the amount of "the amount of drug going in is the same as the amount of drug getting taken out."

QUOTE

Many drug effects occur primarily when the blood level of the drug is either going up or going down. When the drug reaches steady state, the…

"

That lesson has to be on something that can be applied

to whatever I am hoping to major in. I am planning on

studying pre-med to become a doctor. Could you tell

me how doctors apply math learned in calculus 1?"

I suspect doctors don't actually use any calculus in their daily work with people. BUT, it is used in medical research and analysis.

For example, calculus concepts are applied in studying how medicines act in the body. I found an article called Half-life and Steady State that talks about how the patient might be taking a medication and all the same time the body is clearing the previous doses... Eventually there comes a "steady state" where the amount of "the amount of drug going in is the same as the amount of drug getting taken out."

QUOTE

Many drug effects occur primarily when the blood level of the drug is either going up or going down. When the drug reaches steady state, the…